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ABSTRACT

Climate Forecast System, version 2, predictions of monthly U.S. severe thunderstorm activity are analyzed

for the period 1982–2016. Forecasts are based on a tornado environmental index and a hail environmental

index, which are functions of monthly averaged storm relative helicity (SRH), convective precipitation

(cPrcp), and convective available potential energy (CAPE). Overall, forecast indices reproduce well the

annual cycle of tornado and hail events. Forecast index biases aremostly negative and caused by environment

values that are low east of the Rockies, although forecast CAPE is higher than the reanalysis values over the

High Plains. Skill is diagnosed spatially for the indices and their constituents separately. SRH ismore skillfully

forecast than cPrcp and CAPE, especially during December–June. The spatial patterns of forecast skill for

CAPE and cPrcp are similar, with higher skill for CAPE and less spatial coherence for cPrcp. The indices are

forecast with substantially less skill than the environmental parameters. Numbers of tornado and hail events

are forecast with modest but statistically significant skill in some NOAA regions and months of the year. Skill

tends to be relatively higher for hail events and in climatologically active seasons and regions. Much of the

monthly skill appears to be derived from the first 2 weeks of the forecast. El Niño–Southern Oscillation

(ENSO) modulates forecasts and, to a lesser extent, forecast skill, duringMarch–May, with more activity and

higher skill during cool ENSO conditions.

1. Introduction

Severe thunderstorms (tornadoes, large hail, and

damaging straight-line wind) are especially frequent in

some parts of the United States. In response to these

natural hazards, U.S. governmental agencies have co-

ordinated efforts to issue severe weather forecasts, col-

lect storm reports, and train forecasters since the 1950s

(Galway 1989). As observing networks, technology, and

our physical understanding have improved, so have

forecasts of severe thunderstorms (Schaefer 1986). A

particular challenge facing severe weather forecasters is

that the ability of numerical weather prediction (NWP)

models to resolve severe thunderstorms is still limited.

In the 1990s, forecasters began to take advantage of re-

search showing that the likelihood of severe thunderstorm

occurrence (especially supercell thunderstorms) could

be related, at least to first order, with local meteoro-

logical conditions in the form of severe thunder-

storm indices (Davies and Johns 1993; Johns et al. 1993).

Typical ingredients of severe thunderstorm indices are

quantities such as convective available potential energy

(CAPE) and deep-layer (often 0–6 km) vertical wind

shear. These indices, computed from observations or

output from numerical weather prediction models,

can provide guidance to forecasters (Rasmussen and

Blanchard 1998; Togstad et al. 2011), in what has been

termed an ‘‘ingredients’’ forecast methodology (Doswell

et al. 1996). The same ingredients approach has been

used to investigate the climatological frequency of severe
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thunderstorms (Brooks et al. 2003) and to interpret cli-

mate change projections (Diffenbaugh et al. 2013).

Although weather predictability beyond 3 weeks is

limited (Simmons and Hollingsworth 2002; Buizza and

Leutbecher 2015), a rationale for seasonal climate

forecasting has followed from recognizing that the pre-

diction of monthly averages, or more generally, the

statistics of weather, can be feasible on the basis of

initial condition predictability and forcing from slowly

evolving ocean temperatures (Shukla 1981, 1998).

Now, seasonal predictions of quantities such as pre-

cipitation, near-surface temperature, and hurricane

activity are routinely produced and issued. In many re-

gions, including the United States, El Niño–Southern
Oscillation (ENSO) is the source of much of the skill of

seasonal predictions (Quan et al. 2006). Seasonal fore-

casts have been limited for the most part to seasonal

averages, but there is increasing recognition that

forecasts are capable of providing information about

other aspects of the forecast distribution, including

extremes (Becker et al. 2013). Most recently, there

has been a convergence of interest, demand, and

scientific capacity on subseasonal-to-seasonal (S2S)

forecasts, which have lead times and forecast targets

in the space between medium-range weather and

long-range or seasonal forecasts (Vitart et al. 2017).

Forecasts of extreme events, either in the sense of

rarity or impact, are a topic of considerable interest in

S2S prediction (Lee et al. 2018; Vitart and Robertson

2018). Extended-range S2S outlooks for severe thun-

derstorm activity including tornadoes and hail are one

of the newest areas of interest and activity (Tippett

et al. 2015; Carbin et al. 2016).

At present, there are two general approaches to

making long-range forecasts of severe thunderstorm

activity. One approach is based on the statistical re-

lationships between severe thunderstorm activity and

observed or dynamically forecast sea surface tempera-

ture (SST; e.g., Elsner and Widen 2014; Allen et al.

2015b; Lepore et al. 2017). Other studies, while not ex-

plicitly making predictions, have identified predictable

climate components such as the Madden–Julian oscil-

lation (MJO) and the tropical Pacific SST, which

modulate severe thunderstorm activity and have the

potential to be useful predictors (Cook and Schaefer

2008; Lee et al. 2013; Barrett and Gensini 2013; Gensini

andMarinaro 2016;Molina et al. 2016; Cook et al. 2017).

A second, more recent, approach uses dynamical

model forecasts of the large-scale environments that

are favorable to severe thunderstorm occurrence, es-

sentially extending the ingredients method from short-

range weather forecasting to S2S prediction (Carbin

et al. 2016).

To quantify the extent to which S2S forecast models

are capable of providing useful predictions of tornado

or hail frequency at longer leads, here we examine the

performance of ensemble monthly forecasts from the

Climate Forecasting System, version 2 (CFSv2; Saha

et al. 2014). Since the CFSv2 horizontal resolution

is not sufficient to resolve thunderstorms, we use an

ingredients approach with some modifications for

monthly targets. Indices such as the tornado envi-

ronment index (TEI; Tippett et al. 2012, 2014) and the

hail environment index (HEI; Allen et al. 2015a)

computed using reanalysis data have been demon-

strated to perform well in representing the monthly

climatological frequency of hail and tornado occur-

rence and their interannual variability. Here, monthly

CFSv2 forecasts of these severe thunderstorm indices

are evaluated to assess their skill in forecasting re-

gimes that are supportive of severe thunderstorms

during the upcoming month. To this end, we assess

the skill of monthly CFSv2 forecasts of TEI and HEI,

and their ingredients using storm report data and

the North American Regional Reanalysis (NARR;

Mesinger et al. 2006).

2. Data

Tornado and hail reports are taken from the NOAA/

Storm Prediction Center’s (SPC) Severe Weather

Database and aggregated to monthly scale over the

period 1982–2016 and to a 18 3 18 grid over the con-

tiguous United States (CONUS). The gridded tornado

data used here are made up of the number of tornado

reports (including all intensities) with starting latitudes

and longitudes in each grid box each month. The

gridded hail data are the number of hail events in each

grid box each month, where the number of hail events

is defined to be the number of 3-hourly periods with

one or more reports of hail greater than 1 in. in di-

ameter (Allen et al. 2015a). Tornado and hail reports

are a useful but imperfect representation of the fre-

quency of tornado and hail occurrence, as they are

influenced by factors such as population, changing re-

porting practices, and evolving technology (Verbout

et al. 2006; Allen and Tippett 2015). For simplicity, we

will refer to the report-based gridded datasets as

tornado and hail events.

The severe weather indices relate the climatological

monthly number of tornado and hail events to climato-

logical monthly averages of atmospheric parameters

using a Poisson regression (PR), a standard statistical

method for the modeling of count data (Tippett et al.

2012, 2014; Allen et al. 2015a). In particular, the indices

are functions of convective precipitation (cPrcp), 0–3-km
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storm relative helicity (0–3-km SRH), and, in the case

of HEI, 180-hPa mixed-layer convective available

potential energy (MLCAPE). Specifically, TEI and

HEI are defined as

TEI5 exp[214:011 1:36 log(cPrcp)1 1:89 log(0–3-km SRH)]DDxDy cosf ,

HEI5 exp[215:531 0:72 log(cPrcp)1 2:03 log(0–3-km SRH)1 0:51 log(MLCAPE)]DDxDy cosf , (1)

where we use the three-parameter form of HEI, pre-

sented in Table 2 in Allen et al. (2015a). The factor

DDxDy cosf outside the exponential in each index is the

offset, which accounts for the varying grid area and

month length; f is the latitude in radians; Dx and Dy are,
respectively, the longitude and latitude spacings in de-

grees, which are both equal to 1 here; and D is the

number of days in the month. The offset term makes

the units of the indices the number of events per unit

area per day, resulting in the regression coeffi-

cients being independent of the grid resolution and

climatology length.

Monthly averages of cPrcp, 0–3-km SRH, and

MLCAPE for the period 1982–2016 are taken from the

NARR (Mesinger et al. 2006), averaged from its native

32-km resolution to the 18 3 18 grid. The constants that

appear in (1) were estimated using climatological values

of NARR data and confirmed SPC reports over the

period 1979–2010 for TEI (Tippett et al. 2012) and over

the period 1979–2012 for HEI (Allen et al. 2015a). The

values of the intercept terms in the indices have been

adjusted to account for the use of matching offsets here.

Forecast monthly averages of cPrcp, 0–3-km SRH, and

MLCAPE come from the CFSv2, a fully coupled dynam-

ical ocean–atmosphere prediction system (Saha et al.

2014). CFSv2 data from January 1982 throughMarch 2011

are hindcasts, and the CFSv2 data for the period from

April 2011 through December 2016 are real-time forecast

products. The hindcasts have initializations on every fifth

day at 6-h intervals, and these pentad starts are usually

organized as monthly ensembles consisting of six or seven

pentads. Here, we use the average of the 16 initializations

(four pentad starts) up to the seventh day of the month

being forecast. The earliest start date is 18 September for

forecasts of October. The exact start dates are different

each month, and forecasts with start dates in the month

being forecast do not include data prior to the start time in

their monthly averages. We apply the same pentad sam-

pling of start times to the real-time period for consistency.

The 0–3-km SRH andMLCAPE data are provided on the

18 3 18 grid, and cPrcp (CPRAT) data are interpolated

from the T126 Gaussian grid. Submonthly data for the

same time period and variables are not presently available.

The results are presented for both CONUS-wide and

FIG. 1. Map of NOAA U.S. Climate Regions (https://www.ncdc.noaa.gov/monitoring-

references/maps/us-climate-regions.php); for brevity, the ‘‘Northern Rockies and Central’’

region has been renamed the ‘‘Plains’’ and the ‘‘Ohio Valley’’ region is referred to as the

‘‘Central’’ region.
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regional analyses based on NOAA’s U.S. Climate Re-

gions (Fig. 1; Karl and Koss 1984).

3. Results

a. CONUS-wide events and indices

We first compare CONUS-wide totals of the indices

computed using reanalysis and forecast data to monthly

numbers of tornado reports and hail events. The rank

correlations of the CONUS-wide totals of the NARR-

based TEI and HEI with tornado and hail events are 0.83

and 0.89, respectively (Figs. 2a,d). The NARR-based in-

dices represent fairly well the interannual range of the

report data, which is not guaranteed, since the method-

ology used to develop the indices uses only climatological

values. Notably, the largest NARR TEI value of 600,

which occurred inApril 2011 when a record-breaking 700

tornadoes were reported, is outside the data used to es-

timate the TEI coefficients. The NARR-based and

CFSv2-based indices arewell correlated (0.77 and 0.92 for

TEI and HEI, respectively), but the range of the CFSv2

indices is substantially less than that of theNARR indices

(Figs. 2b,e). However, the amplitude of the forecast in-

dices covers most of the data since extreme numbers of

tornadoes and hail events are fairly rare. The amplitude

of the CFSv2 TEI matches that of the NARR TEI up to

about 200, which corresponds to the 99th percentile of the

tornado report data. The maximum amplitude of the

CFSv2 HEI is about 500, which corresponds to the 96th

percentile of the hail event data. The limited range of the

CFSv2 indices means that they do not match the range of

monthly tornado numbers and hail events. Nonetheless,

the correlations between the CFSv2 indices and report

data are only slightly less than those between the CFSv2

indices andNARR indices (Figs. 2c,f). However, much of

the variability of the monthly tornado and hail events is

due to the annual cycle. In fact, the rank correlations of

the climatological annual cycle of tornado and hail events

with their monthly values are 0.78 and 0.90, respectively,

which raises the question of how the forecast climatology

and forecast interannual variability contribute to forecast

quality.

b. Forecast climatology

1) CONUS AND REGIONAL ANNUAL CYCLES

The phasing and amplitude of the CFSv2 TEI annual

cycle matches that of the tornado events and the NARR

FIG. 2. Scatterplots of CONUS (top) tornado events and TEI and (bottom) hail events and HEI. The Spearman rank correlations of

CONUS tornado counts and TEI in the top row and hail events and HEI in the bottom row are shown. The gray line follows the 1:1 ratio.
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TEI fairly well CONUS wide and for NOAA regions

east of the Rockies (Fig. 3). Peak values of the CFSv2

TEI are too low in the South, Southeast, Central, and

Midwest regions, and these biases result in the CONUS

values of the CFSv2 TEI being too low, despite peak

values being slightly too high in the Northeast region.

Peak values of the CFSV2 TEI in the South and

Southeast regions are shifted a month earlier to April.

The CFSv2 TEI also does not capture the sustained

activity through the end of summer and into early fall in

the Southeast and has unrealistically high values in

December. The phasing of the CFSv2 TEI in the

Northwest is similar to that of the NARR TEI, but

neither matches the tornado events. The CFSv2 TEI

phasing is similar in the West region to both the NARR

TEI and tornado events. Since there are comparatively

few observations in the western regions, comparisons

with the NARR and CFSv2 indices there are more

uncertain.

The annual cycle of the HEI better matches the

monthly totals of hail events (Fig. 4) than does TEI and

tornado events for the CONUS as well as the South,

Northeast, Central, Upper Midwest, and Plains regions.

CFSv2 outperforms NARR in terms of both seasonal

peak timing and the overall magnitude in the Central

and Plains regions, with correlation greater than 0.99

over the Plains. Despite some underestimation in the

overall magnitude of the seasonal peak in the South,

Southeast, Northeast, and Central regions, generally

these differences are not appreciably worse than those

for NARR, suggesting that there is good representation

of the annual cycle. Similar to the differences noted for

TEI (Fig. 3), HEI CFSv2 estimates over the Southwest,

Northwest, and West show limited association with the

FIG. 3. Annual cycle of monthly tornado events, NARR TEI, and CFSv2 TEI for the CONUS and the nine NOAA regions. The

numbers in parentheses and square brackets are the Spearman rank correlations of the annual cycle of tornado events with NARR TEI

and with CFSv2 TEI, respectively.

FIG. 4. Annual cycle of monthly hail events, NARRHEI, and CFSv2HEI for the CONUS and the nine NOAA regions. The numbers in

parentheses and square brackets are the Spearman rank correlations of the annual cycle of hail events with NARRHEI and with CFSv2

HEI, respectively.
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report data, though these differences may reflect the

presence of environments producing hail that are

not characteristic to other parts of the country (Allen

et al. 2015a).

2) ANNUAL AVERAGE SPATIAL DISTRIBUTION

The spatial distribution of the annual averages of

CFSv2 TEI are consistent with the largest frequencies

for tornadoes being over the Central Plains and South-

east; however, the distribution also shows considerable

differences, particularly in terms of magnitude com-

pared to the distribution of the NARR TEI values

(Figs. 5a,b). NARR TEI peak values are located over

eastern Oklahoma and extend with decreasing magni-

tude southeast and are characterized by one or twomore

tornadoes on average per year compared to the CFSv2

TEI values. Peak values of CFSv2 TEI are located

farther southeast, over Arkansas, Louisiana, and Mis-

sissippi. CFSv2 tends to be overly distributed between

the two observed peak regions and biased eastward

compared to the observational peak frequency over

Kansas and Colorado (Fig. 5c), particularly over the

Southern Plains. CFSv2 also tends to overemphasize the

frequency over the northern High Plains into Montana

compared to both NARR and the report data.

HEI displays some of the same spatial behavior as

TEI, but with a much larger spatial disparity between

the peak climatologies of CFSv2 and NARR (Figs. 5d,e).

CFSv2 HEI better captures the extension of the

observed hail frequency westward from the northern

Great Plains intoMontana, with a reduced emphasis on

high frequencies over the southeastern United States.

Another region where hail events are frequent is found

proximal to the warm Gulf Stream near the East Coast

in both CFSv2 and NARR, contrasting a local nadir

over the Appalachians. Nonetheless, over the majority

of the southeastern United States, both CFSv2 and

NARR underrepresent the frequency of reported hail

events, consistent with the potential for differences in

parameter weighting between regions and poten-

tially problematic observations, as noted by Allen

et al. (2015a).

3) SOURCES OF FORECAST BIAS

Differences between the CFSv2 and NARR index

climatologies are due to differences in their environ-

mental ingredients, and these differences vary by region

and calendar month. The largest annual average values

of the difference between CFSv2 TEI and NARR TEI

are negative and occur in parts of Texas, Oklahoma,

Kansas, and Missouri (Fig. 6a). To assess the sources of

these differences, we computed the annual average

change in the NARR TEI that results when NARR

cPrcp values are replaced with CFSv2 cPrcp values

(Fig. 6b) and when NARR 0–3-km SRH values are re-

placed with CFSv2 0–3-km SRH values (Fig. 6c). Both

cPrcp and 0–3-km SRH are responsible for overall re-

ductions in the CFSv2 TEI compared to theNARRTEI,

FIG. 5. Average yearly totals of (a) NARR TEI, (b) CFSv2 TEI, and (c) tornado events. Yearly averages of (d) NARR HEI, (e) CFSv2

HEI, and (f) hail events.
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though with some spatial differences. The effect in TEI

due to using CFSv2 0–3-km SRH is negative almost

everywhere. The smaller native horizontal resolution of

NARR generally favors a more detailed rendition of the

mesoscale features that lead to the largest 0–3-km SRH

values. Using CFSv2 values of cPrcp leads to some in-

creases in TEI along the Texas coast that are offset by

the decreases due to CFSv2 0–3-km SRH. Decreases in

TEI due to CFSv2 cPrcp extend farther northward and

into the Central region than those due to CFSv2 0–3-km

SRH. This overall picture holds through most of the

year, except that higher values of CFSv2 TEI in winter

months are due to its higher values of cPrcp (not

shown). Differences between the cPrcp products are

expected, given the different convective parameteriza-

tion schemes used for NARR and CFSv2 and differ-

ences in the model resolution.

Differences between CFSv2 and NARR HEI values

are similar to those for TEI with the addition of positive

values in western Kansas, Nebraska, and South Dakota

(Fig. 6d). The annual average change in NARR HEI

when NARR cPrcp values are replaced with CFSv2

cPrcp values (Fig. 6e) is smaller than for TEI because of

the smaller cPrcp coefficient inHEI. The annual average

changes in NARR HEI when NARR 0–3-km SRH is

replaced by CFSv2 0–3-km SRH are larger. The high

values of CFSv2 HEI in western Kansas, Nebraska, and

SouthDakota are due to higher CFSv2MLCAPE values

there, especially in June–August (not shown). Positive

CFSv2 MLCAPE contributions stretch north through

theGreat Plains and extendwestward toward theRockies,

particularly over New Mexico, Colorado, Wyoming,

and Montana, and explain much of the northward dis-

placement of the CFSv2-based HEI. This difference

between the CFSv2 andNARRHEI climatologies is not

necessarily a deficiency, since a limitation of the NARR

HEI climatology was its poor representation of the

westward extent of hail events (Allen et al. 2015a),

driven by overly dry lower-tropospheric profiles in

NARR that reduce MLCAPE in response to biases in

the convective precipitation scheme (Gensini et al.

2014). The CFSv2 MLCAPE values are considerably

lower than those of NARR over the Southeast, South,

Gulf Coast, and Florida during July and August (not

shown) but have only a modest impact on the annual

values of HEI there because conditions are relatively

less favorable for hail during this period.

The regional assessment of the annual cycles of the

indices and report data (Figs. 3 and 4) reveals biases in

the phasing of peak activity. These differences in the

month of peak activity according to the indices and re-

port data also have a clear spatial coherence (Fig. 7).

CFSv2 depicts a winter peak, with maxima along the

Gulf Coast during December and subsequently over

Florida in January and February. This contrasts with a

far smoother peak frequency during March over this

region in NARR. The differences are smaller as the

season reaches the May–June annual maximum fre-

quency, with much of the northern Plains showing an

earlier peak in CFSv2 compared to NARR. This earlier

phasing in CFSv2 is more consistent with the observa-

tions, leading to higher correlations over the Midwest,

Plains, and Central regions. Similar lagging character-

istics are found for the HEI (Figs. 7d–f), with the CFSv2

FIG. 6. Spatial distribution of yearly totals differences between (a),(d) the CFSv2 and NARR indices, and between mixed indices and

NARR for (b),(c) TEI and (e)–(g) HEI.
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annual cycle characterized by March peaks over the

southeastern United States, before maintaining a very

similar pattern to both the NARR and observations

through the remainder of the season.

c. Forecast skill

1) ENVIRONMENTS

The level of association (skill) of CFSv2 forecasts of

TEI and HEI with numbers of tornado and hail events is

limited by two factors—the skill with which the severe

weather indices themselves can be predicted and the

degree to which the indices correspond to the observa-

tions. Sampling variability might also play a role in the

latter, given the large variability in severe thunderstorm

activity. Furthermore, the skill with which the indices can

be predicted depends on the skill with which the index

constituents—cPrcp, MLCAPE, and 0–3-km SRH—can

be predicted. While there have been skill assessments of

monthly forecasts of quantities such as SST, precipitation,

and 200-hPa height (Kumar et al. 2011), limited work is

available with respect to the parameters used here (e.g.,

Jung and Kirtman 2016). As far as we know, this is the

first comprehensive skill assessment of monthly forecasts

of quantities that are relevant for severe weather.

Rank correlations over the CONUS between NARR

and CFSv2 environments are positive overall (Fig. 8).

Of the three environmental factors, CFSv2 forecasts of

0–3-km SRH show the highest positive correlations with

NARR values, especially for the months from December

through May. The higher skill in predicting 0–3-km

SRH is somewhat expected, since tropospheric wind

fields and upper-air features are known to be forecast

with higher skill than thermodynamic and surface climate

quantities such as temperature and precipitation (Kumar

et al. 2011).

Lower correlations for 0–3-km SRH are found over

the summer months, during which the mesoscale factors

that contribute to the development of 0–3-km SRH are

expected to be not well resolved by CFSv2, with a

coarser native horizontal resolution compared to NARR,

that lead to a less accurate rendition of the small me-

soscale features leading to enhanced 0–3-km SRH. The

maps of forecast correlation for MLCAPE and cPrcp

show lower values and are less spatially coherent,

reflecting smaller spatial scales, especially for cPrcp.

Overall, forecast correlations for MLCAPE are larger

than those for cPrcp. Forecast correlations for April

MLCAPE are notably high and widespread.

2) INDICES

Errors in the forecasts tend to be compounded when

the environmental parameters are combined in the se-

vere weather indices. Despite this, large portions of the

CONUS show significant positive correlations between

NARR- and CFSv2-based indices, although some of

those correlations (e.g., westernUnited States in winter)

may be less relevant for severe weather activity (Fig. 9).

Overall, the maps of forecast correlation for TEI and

HEI are very similar, but with correlations for TEI being

somewhat lower and less spatially coherent, consistent

with the behavior of MLCAPE relative to cPrcp seen

FIG. 7. Climatological peak month at each grid point for tornado events and hail events, and corresponding indices for both NARR

and CFSv2.
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previously. Relatively high correlations in March–July,

especially for HEI, are noteworthy as they occur in areas

where severe thunderstorms are frequent. A secondary

peak in severe weather activity occurs in the end of

October and November as the climatological positions

of the upper-level jet stream shift southward. Activity

during this time of the year often occurs in Gulf Coast

states and can spread through the Southeast and Central

regions, and the indices are predicted with relatively

good skill during these months in these areas.

3) OBSERVATIONS

Finally, we look at the rank correlation of CFSv2-

predicted values of TEI andHEI with the corresponding

NARR-based indices and observed tornado counts and

hail events data (Tables 1–6). Correlations can be af-

fected by trends, and the observations, especially the

number of hail events, have upward trends that are

believed to be related to reporting procedures rather

than changes in tornado and hail frequency (Verbout

et al. 2006; Allen and Tippett 2015). Detrending, how-

ever, can be problematic since the procedure assumes

that trends are stable, while the data indicate that these

trends have lessened or stopped in recent years. An al-

ternative to detrending is to form year-to-year differ-

ences of the data (Tippett 2014). Differencing improved

the overall correlations between NARR HEI and the

number of hail events (not shown) but has little impact

on the correlations between CFSv2HEI and the number

of hail events (not shown).

First, we examine the extent to which the severe

weather indices computed using reanalysis data are able

to match the year-to-year variability of the observed

tornado and hail events. Rank correlations of the

NARR indices with the numbers of tornado and hail

events are statistically significant in the majority of

FIG. 8. Spatial rank correlations of the monthly environments; values of 20:33# r# 0:33 are not significant.
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regions and months, especially those when severe

thunderstorm activity is common (Tables 1 and 2).

There are slightly fewer regions and months where HEI

has a statistically significant correlation with the number

of hail events compared to TEI with the number of

tornado events. Correlations of CONUS-wide NARR

indices with storm report data are statistically signifi-

cant in most months with the exception of August and

September for TEI andAugust, September, andNovember

for HEI. On a CONUS-wide basis, NARR HEI correla-

tions areweaker in everymonth than those forTEI, perhaps

because of regional biases or reporting issues.

Examining the rank correlation of the CFSv2-based

indices with the NARR-based indices (Tables 3 and 4

for TEI andHEI, respectively) shows that indices can be

skillfully predicted in most regions and months of the

year. Evaluating CFSv2 using storm report data shows

rank correlations that are smaller than those with the

NARR indices, with fewer significant values. However,

there is still some skill, especially for TEI in the South,

Southeast, and Central regions, and for HEI in the

Upper Midwest and Plain regions; this trend is seen

more broadly for both indices over the entire CONUS

(Tables 5 and 6).

d. ENSO

A reasonable expectation, given the connections be-

tween U.S. severe thunderstorms and ENSO during

FIG. 9. Spatial rank correlations of the indices; values of 20:33# r# 0:33 are not significant.

TABLE 1. Rank correlation of NARR TEI with the number of tornado events by NOAA region and month. The values in boldface (78)

are statistically significant (p value , 0.05, t test). Missing values are for months with fewer than 10 monthly observations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South 0.66 0.56 0.57 0.65 0.65 0.53 0.63 0.26 0.2 0.69 0.61 0.72

Southeast 0.69 0.5 0.47 0.65 0.61 0.47 0.15 0.17 0.39 0.42 0.46 0.62
Central 0.76 0.67 0.68 0.53 0.76 0.68 0.5 0.36 0.63 0.54 0.4 0.73

Upper Midwest — — 0.66 0.34 0.52 0.55 0.67 0.41 0.5 0.43 0.53 —

Plains — — 0.44 0.45 0.69 0.61 0.72 0.37 0.48 0.34 — —

Northeast — — — 0.53 0.43 0.51 0.43 0.55 0.39 0.31 0.65 —

Southwest — — 0.37 0.3 0.42 0.32 0.13 0.27 20.06 0.57 — —

Northwest — — 20.03 20.02 0.39 0.38 0.35 0.14 0.27 — — —

West 0.61 0.32 0.61 0.3 0.27 0.65 0.28 0.41 0.58 — — 0.52
CONUS 0.75 0.67 0.66 0.54 0.69 0.69 0.67 0.28 0.14 0.45 0.44 0.63
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spring (March–May; Allen et al. 2015b; Lepore et al.

2017) is that the CFSv2 severe thunderstorm forecasts or

their skill might depend on the ENSO phase. To address

the question of how ENSO modulates the forecasts, we

correlated Niño-3.4 with the average of the forecast in-

dices in a region where there is a relatively strong ENSO

signal in tornado and hail activity (Allen et al. 2015b).

All correlations between index forecasts and Niño-3.4
are negative for March–May targets (first two rows in

Table 7, indicating forecasts of higher activity during

cool ENSO (La Niña like) conditions, which is in line

with previous findings of higher activity expected during

cool ENSO (La Niña like) conditions (Lepore et al.

2017). The negative correlations with ENSO are sta-

tistically significant in March (20.37) for TEI and in

March–May (20.47, 20.36, and 20.36, respectively)

for HEI.

To address the question of whether ENSO modulates

forecast skill, we computed the CONUS-wide pattern

correlation of the CFSv2 environments with the NARR

environments for each forecast and then computed the

rank correlation of the environment pattern correlation

with Niño-3.4 (last three rows in Table 7). The rank

correlation was negative for all environmental variables,

indicating a negative relationship between ENSO and

skill as measured by pattern correlation. This negative

relationship means that the pattern correlation between

forecast and reanalysis environments is greater dur-

ing cool ENSO (La Niña like) conditions. However,

the only statistically significant correlations were for

MLCAPE and 0–3-km SRH inMarch (20.37 and20.35,

respectively). We repeated this analysis for the

CONUS-wide pattern correlation of the CFSv2-based

and NARR-based indices, but we found no consistent

relationship.

Overall, we find that ENSO modulates the amplitude

of the forecasts and, to a lesser extent, the skill of the

forecast environments during March–May, with higher

forecast activity and higher skill during cool ENSO

conditions.

4. Summary and discussion

The Climate Forecasting System, version 2, is an

operational coupled global ocean–atmosphere model

used to produce subseasonal-to-seasonal (S2S) forecasts

(Saha et al. 2014), with good skill in predicting ENSO

and the MJO, as well as precipitation and near-surface

temperature. The horizontal resolution of CFSv2 pre-

cludes it from resolving individual storms, but it does

TABLE 2. Rank correlation of NARRHEI and the number of hail events by NOAA region andmonth. Statistically significant values (63)

are set in boldface, as in Table 1.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South 0.53 0.63 0.48 0.55 0.67 0.64 0.83 0.65 0.44 0.34 0.41 0.34

Southeast 0.57 0.33 0.55 0.51 0.41 0.24 0.27 0.57 0.1 0.25 0.17 0.28

Central 0.71 0.59 0.53 0.72 0.7 0.68 0.31 0.24 0.38 0.52 0.48 0.18

Upper Midwest — — 0.76 0.71 0.76 0.61 0.34 0.12 0.35 0.57 0.44 —

Plains — — 0.58 0.58 0.72 0.62 0.51 0.33 0.49 0.62 — —

Northeast — — 0.35 0.62 0.6 0.57 0.33 0.25 0.54 0.1 — —

Southwest — — — 0.06 0.34 0.14 0.19 0.2 0.02 0.54 — —

Northwest — — — 0.18 0.23 0.15 0.26 0.21 0.39 — — —

West — — 20.2 – 0.1 0.13 0.39 0.34 0.16 0.29 — —

CONUS 0.65 0.59 0.46 0.49 0.54 0.57 0.51 0.3 0.1 0.38 0.35 0.38

TABLE 3. Rank correlation of NARR TEI and CFSv2 TEI by NOAA region and month. The values in boldface (94) are statistically

significant (p value ,0.05, t test).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South 0.49 0.48 0.3 0.21 0.39 0.27 0.34 0.14 0.32 0.47 0.5 0.21

Southeast 0.59 0.37 0.33 0.62 0.69 0.48 0.36 0.2 0.42 0.39 0.69 0.6
Central 0.64 0.69 0.45 0.49 0.57 0.62 0.38 0.03 0.39 0.18 0.41 0.37

Upper Midwest 0.47 0.68 0.41 0.49 0.34 0.64 0.48 0.36 0.44 0.2 0.28 0.25

Plains 0.67 0.48 0.35 0.46 0.43 0.63 0.66 0.34 0.47 0.5 0.49 0.66

Northeast 0.63 0.68 0.67 0.32 0.28 0.44 0.15 0.41 0.07 0.42 0.27 0.07

Southwest 0.52 0.3 0.33 0.2 0.38 0.4 0.52 0.49 0.17 0.46 0.31 0.37

Northwest 0.46 0.48 0.48 0.47 0.26 0.47 0.49 0.43 0.45 0.43 0.43 0.68

West 0.71 0.39 0.66 0.46 0.44 0.66 0.48 0.66 0.21 0.38 0.25 0.56
CONUS 0.65 0.49 0.36 0.46 0.5 0.71 0.48 0.36 0.45 0.43 0.68 0.31
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resolve large-scale features, including quantities such as

MLCAPE and vertical wind shear, which provide in-

formation about the favorability of conditions for severe

thunderstorms. Here, we have assessed the skill with

which CFSv2 predicts environments that favor severe

convection, severe thunderstorm indices, and the num-

bers of tornado and hail events.

Overall, the climatological frequencies of CFSv2-

based indices are generally in line with values from

NARR, particularly over the central plains and south-

eastern United States. However, there are some dis-

parities in magnitude, with CFSv2 spreading higher

climatological likelihoods farther away from the Great

Plains. The source of the biases in the aggregated annual

cycle and spatial climatology vary regionally and sea-

sonally (Fig. 6), but overall, forecast monthly averages

of 0–3-km SRH and cPrcp are lower than those from the

reanalysis. For the majority of the CONUS and the

majority of months, differences in the representation of

convective precipitation drive TEI biases, and together

with MLCAPE, which is generally larger in CFSv2

particularly over the High Plains, impact HEI. The

0–3-km SRH in CFSv2 is generally weaker, especially

during the summer months when smaller-scale meso-

scale features aremore prevalent, contributing locally to

the peak of the negative biases.

Whether or not there is skill in predicting storm

numbers depends on how well the environment (in-

gredients) in the index can be predicted and the extent

to which a monthly index is able to capture the vari-

ability of storm occurrence. CFSv2 monthly forecast

skill of the environments is highest for 0–3-km SRH,

followed by MLCAPE and cPrcp (Fig. 8). Although

errors in predictions of the environments tend to be

compounded in the indices, there are statistically sig-

nificant correlations between the NARR-based and

CFSv2-based indices over the CONUS and many of the

region east of the Rockies (Tables 1–6), especially for

months of peak activity. Forecast skill is reduced when

we compare forecasts to storm report data, but still is

present in some regions and during some times of

the year.

Recent studies have shown that the skill of sub-

seasonal forecasts of near-surface temperature and pre-

cipitation drops greatly as the lead time increases and

the target period changes from week 2 to week 3 (Li and

Robertson 2015; DelSole et al. 2017; Vigaud et al. 2017).

Therefore, we expect that much of the skill in monthly

forecasts of severe thunderstorm activity results from

skill in the first 2 weeks. Since submonthly CFSv2 data

for these variables are not available for this period, we

partially tested this hypothesis by correlating CFSv2

TABLE 4. Rank correlation of NARR HEI and CFSv2 HEI. Statistically significant values (91) are set in boldface, as in Table 1.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South 0.56 0.6 0.4 0.42 0.45 0.44 0.51 0.38 0.35 0.35 0.52 0.19

Southeast 0.64 0.36 0.39 0.58 0.76 0.52 0.2 0.26 0.49 0.54 0.71 0.64

Central 0.63 0.63 0.4 0.54 0.56 0.64 0.35 0.1 0.34 0.11 0.35 0.29

Upper Midwest 0.54 0.69 0.43 0.6 0.3 0.58 0.3 0.26 0.54 0.21 0.36 0.26

Plains 0.69 0.55 0.39 0.55 0.33 0.59 0.63 0.17 0.54 0.42 0.45 0.66
Northeast 0.6 0.62 0.61 0.38 0.33 0.54 0.32 0.39 0.15 0.49 0.32 0.21

Southwest 0.5 0.28 0.22 0.15 0.32 0.26 0.25 0.42 0.21 0.54 0.39 0.37

Northwest 0.48 0.46 0.52 0.22 0.23 0.29 0.35 0.51 0.49 0.31 0.36 0.7

West 0.71 0.43 0.68 0.47 0.52 0.49 0.5 0.61 0.23 0.53 0.2 0.6
CONUS 0.64 0.56 0.39 0.56 0.42 0.68 0.53 0.4 0.42 0.36 0.53 0.33

TABLE 5. Rank correlation of CFSv2 TEI and the number of tornado events by NOAA region and month. Statistically significant values

(34) are set in boldface, as in Table 1.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South 0.43 0.27 0.48 0.14 0.32 0.52 0.24 20.05 0.04 0.39 0.3 0.04

Southeast 0.22 0.13 0.01 0.57 0.51 0.36 0.18 0.01 0.08 20.04 0.12 0.35
Central 0.54 0.31 0.46 0.47 0.43 0.33 0.46 0.05 0.28 0.11 0.33 0.1

Upper Midwest — — 0.26 0.38 0.15 0.57 0.4 0.4 20.09 0.03 0.06 —

Plains — — 0.23 0.38 0.17 0.43 0.45 0.08 0.06 0.11 — —

Northeast — — — 0.22 0.05 0.23 0.23 0.06 0.44 0.28 0.15 —

Southwest — — 0.1 0.1 0.04 0.28 20.28 0.02 20.14 0.17 — —

Northwest — — 20.21 20.14 0.3 0.1 0.06 20.13 0.13 — — —

West 0.6 0.01 0.37 0.13 0.32 0.47 0.32 0.6 20.01 — — 0.28

CONUS 0.6 0.28 0.4 0.42 0.28 0.54 0.39 0.19 20.21 0.34 0.38 0.11
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forecasts of severe thunderstorm indices separately with

observations from the first and second halves of the

month. The correlations of the forecasts with the ob-

servations from the first half of the month are roughly

comparable (not shown) with those for the full month,

while the correlations between forecasts and observa-

tions from the second half of the month are very low,

consistent with Carbin et al. (2016). However, because

of the wide range of start dates included in the forecast

ensemble, the precise dependence on lead time can be

confirmed only when submonthly data are available with

higher-frequency start times.

In summary, we have assessed the skill of CFSv2

forecasts within the context of severe thunderstorm ac-

tivity. Indices are forecast with less skill than their

constituent environments, but they do have statistically

significant skill in some areas and during some times of

the year. Forecasts and their skill are modulated by

ENSO phase but contain independent information, as

well, since there appears to be a strong contribution of

the initial conditions to the skill. To the extent that much

of the skill appears to be limited to the first half of the

month, guidance from subseasonal model forecasts with

higher resolution may be of value. Eventually, as compu-

tational resources increase, convection-allowing models

that currently provide realistic and detailed information

at much shorter lead times (Gallo et al. 2016) can be

extended to give storm-scale descriptions of severe

thunderstorm activity at longer leads.
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